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ABSTRACT

The electromagnetic field of an oscillating magnetic dipole

is calculated, assuming that the dipole is immersedin a cold

streamin_ plasma. The amplitude of the magnetic dipole moment,

assumed known, is taken to be sufficiently weak that the line-

arized cold plasma equations may be used to describe the response

of the plasma.

The resulting field of the dipole is rather different from

the field that would result if the plasma were not streaming.

In particular, a longitudinal electrostatic field appears as a

consequence of the plasma's motion. The far field of the dipole

is such that the Poynting vector is not purely radial, but is

tilted against the direction of the zeroth order plasma flow.

The net outward flow of mechanical energy is negligible

for streaming velocities small compared with the velocity

of light. The force necessary to hold the dipole in place is

calculated. This force vanishes when the dipole axis is parallel

to the streaming direction, as does the longitudinal electric

field.
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One interesting non-radiating case which is also treated

(for a non-streaming plasma) is the case when the oscillation

frequency of the dipole is much less than both the plasma fre-

quencies and the collision frequencies. The characteristic

penetration length of the field into the plasma is then given

by the classical "skin-depth" formula.
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I. INTRODUCTION

Electromagnetic fields produced by given time-varying

current and charge distributions in free space have been the

subjects of many calculations, almost from the beginning of

electromagnetic theory. Manyproblems of current interest are

complicated by the fact that the fields may be interacting

with a plasma or ionized gas. Several problems have been

solved in various approximations in recent years for given

distributions of charge and current in the presence of a plasma

[see, for example, Cohen (1961,62)]. But manygaps remain in

our qualitative understanding of the fields to be expected in

particular types of plasma situations.

In particular, effects associated with plasma streaming

have been investigated relatively little. The calculations

which have been done have, to a considerable extent, been con-

cerned with plasmas which, to lowest order, are assumed to be

stationary. It is to be expected that some insight into the

effects of plasma streaming can be gained by seeking specific

solvable problems concerned with radiation into streaming plas-

mas.
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The problem studied in this dissertation is that of the

effect of a cold, streaming plasma on the electric and magnetic

fields of an oscillating magnetic point dipole. The plasma is

unbounded, and streams across the dipole in an arbitrary direc-

tion with respect to the dipole's orientation. Weassumethat

the fields of the dipole are sufficiently weak that they impart

only a small perturbation to the streaming motion of the plasma.

Wealso assumethat the physical dimensions of the dipole are

so small that it does not mechanically obstruct the plasma

flow; i.e., we idealize the dipole as a point.

Lee and Papas (1965) have considered a similar problem

for the oscillating electric dipole. After obtaining an inte-

gral representation for the potential four-vector in the rest

frame of the dipol% they use the transformation properties of

the plasma's dielectric constant to formulate the appropriate

Green's function. For streaming velocities small compared

with the velocity of light, they conclude that the far zone

electromagnetic field is not entirely transverse. As a result,

they show that the Poynting vector associated with the electro-

magnetic dipole is tilted against the direction of plasma flow.



Wefind qualitatively similar results for the oscillating

magnetic dipole, although our results differ considerably in

detail. Moreover, we approach the problem from a different point-

of-view: through the formalism of a set of linearized, covari-

ant cold plasma equations. These equations contain an equation

of continuity and an equation of motion, with temperature

neglected, to describe the dynamical properties of the plasma,

while Maxwell's equations govern the behavior of the electric

and magnetic fields. Wetreat the magnetic dipole as a small,

"external" current source in the senseproposed (for example)

by Cohen (1961). That is, we represent the dipole by

a miniature current loop which weakly perturbs the streaming

plasma. Weassumethat we mayprescribe the current in the

dipole at will. The physical reason for the difference between

our results and those of Lee and Papas is that their electric

dipole possesses, in effect, an oscillating source charge

density, whereas our magnetic dipole is a pure divergenceless

current source.

In the framework given above, the statement of the pro-

blem is relatively straightforward. Yet_ the practical diffi-

culties involved in evaluating the formal expressions obtained

are far from trivial.



4

II. THE MAGNETIC DIPOLE

2.1 Statement of the Problem

A cold, collisionless plasma streams across a circular

loop of oscillating current (Figure i). The orientation of

the flow vector _ relative to the plane of the loop is arbi-
o

trary. We treat the loop as an externally-fixed current source

which is unaffected by the plasma. Later, we shall allow the

area of the current loop to become vanishingly small and its

current to become infinitely large in such a way that we recover

a point magnetic dipole.

The current source generates disturbances in the plasma.

However_ we assume that the source is sufficiently weak and

that the disturbances are sufficiently small that linearized

cold plasma equations are applicable. We seek analytical

expressions for the electric and magnetic fields of the oscil-

lating current loop in the presence of a streaming plasma. This

is a relatively simple problem in the absence of a plasma or,

for that matter, in the presence of a stationary plasma. But

intuition is an unreliable guide to a picture of the fields when

the dipole is immersed in a streaming plasma.



2.2 Solution in Wave-Vector, Frequency Space when

_so_ce. (_'_)= 0

We begin with a set of cold plasma equations for the ith

species of plasma particle:

Equation of Continuity

_n.

m + V (ni_ i_t " ) = 0 (la)

Equation of Motion

Bg. e. _.?.

_-i- +V.. Vv. :-- IN+- x_) _]
1 i mi _i c 2c

(ib)

Maxwell Equations

V X E -
i SB

c _t
(ic)

V X B' 4w_. i B_
c c 5t

(]_a)

V" E : 4w 0 (le)
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V- B = 0 (if)

The equation of continuity and Maxwell's equations are covariant.

The equation of motion is not covariant, although it is correct

up to terms of O(v_/c4),- and can be derived from the covariant

V.

equation of motion by neglecting fourth order terms in __m
c

(Appendix A). In the equations above, n. and _. are the number
1 1

density and velocity, respectively, of the ith species of charge_

while

i

_i --_ 2v i

i- ---g
C

We have neglected a pressure term in the equation of motion, assum-

ing that the plasma thermal velocities are approximately zero. The

.
current density 8 mn equation (id) is the sum of two parts: an

internal plasma current density

_p : E e. n. V.
i 1 l l

and an "external" source current density _" which we will later8s_

specify to be that of an oscillating current loop.
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Equations (i) are nonlinear; they have not been generally

solved. However, we may linearize the equations and obtain a

perturbation-theoretic solution about a uniform equilibrium in

which the electric and magnetic fields are zero. Since there

are no zeroth order electric or magnetic fields in the plasma,

we set E = _(i) and B = 3 (1), where the superscript (i) signifies

a first-order perturbation. Similarly, if n is the equilibrium
O.
1

number density of the ith plasma component and if _ is the unper-
o

turbed streaming velocity common to all components, we may set

(i)
n. = n + n.
1 O. 1

i

- - (i)
V. : _ + V.
i 0 1

where n is measured in the rest frame of the streaming plasma.
O.
I

With these substitutions, the cold plasma equations, linearized

in the first order perturbations, become

Bn. (I)
- (i)

i + n V • v. + V
_t o. i o

1

(i)
° Vn.

i
= 0 (2a)
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_.(i)
V.

__i+_
_t o

- (1)
VV,

i
• (i)+! ( x_( _ oo _(i

mi_ ° c c2
(2b)

X {1) : 1 _(i)
c _t

(2c)

i _(i)
v x {i) : 4_(i) +

c c _t
(2d)

where the current density is now

v]= (1)+ n. "i) E e. + Js '
i 1 1

(3)

the sum of the source current and linearized plasma current densi-

ties. We assume that E n e. = O, i.e. that there is no zeroth-
O. 1

i i

order charge density in the plasma. Also, since _ is the velocity
o

of all plasma components, there is no zeroth order current density.

Since the differential equations (2) have constant coef-

(i) _ (1) g(i),andficients and are linear in the unknowns n. ,
1 i

5 (1) we may solve them by Fourier transforming in _ and t The
, °

Fourier transform of a typical function f(_,t) is

f(f,w) i- _ _ d_ ]dt
(27)

f(_,t)e-i(_._ - mb)
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and a system of differential equations goes over into a system of

algebraic equations for the transforms, with _ _ -iw and

V _ ik (k is the wave vector and _ is the wave frequency for the

_,w th Fourier component).

The Fourier transformed Maxwell equations may be combined

(as in Appendeix B) to yield the wave equation

(2_ c2k2)_(l)+c2
_(1) [nji(l) (i){o]= -4_ iw E ei + n.

i z

- 4w i_ ,
s

(4)

where we have used equation (3) for the current density. We may

couple the plasma dynamics into the wave equation by solving the

Fourier transformed equation of continuity and equation of motion

for n (I) and _(i) in terms of _(1).

l

_(i)= e. I k_ w_
1 -_ 0 o 0

miYo (iw) i + <w-_._ c2(w-_'' )
[ 0

n e., f_ [_(l)= _ oi z _ . + o

ni miv° (iw)(_-_" %) 1 (_-_" %)

The result is

._(l)

-.+

mv_
o o

c2(,-_._o)

(5a)

_(z)

(sb)
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We derive equations (5a) and (5b) in Appendix A. However, it is

v _(worth emphasizing here that we have retained the --° x i)
c

term in the equation of motion and have eliminated _(i) by using

equation (2c). The result of substituting equations (5) into

the wave equation (4) is

(_ _ c2 _2)_(1) + o2 _ .{l)

7:_P2 F (['_ + v _)
i i _ + o o

'_o [ (® - f _ )
o

(k2 - "2/3) (_o_o) ] _(1)
+ (w - _'. _o)2

= -4w i_ Js (6)

We wish to solve equation (6) for _lj(_,_);'_-- we outline

below a procedure for accomplishing the solution.

i) Resolve equation (6) into components which are trans-

verse (±) and parallel (U) to the wave vector _. One of these

components will contain only _s± The other will contain only

Jst! , which will turn out to be zero for the magnetic dipole.
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2) Solve the transverse componentfor _ • _(i) as a func-
O

tion of En (I) .

Solve the parallel component for ER (I) in terms of3)

•
4)

V
O

Solve simultaneously for _ • El (1)
o

then solve the transverse component for El (1).

and_,,(1)and

_(i)([,_):_
I

= 0 are

The results for _s|i

4wi _ {-"

12 _i_____ ] J s±-c2k2' _oJ

_ (Zs__._o)_i Pi °i

2

't c2 _-_._o) -
o YoJ

(7)

_(i)(_,®)_
p --_

B

2_o2k2 iL I
o j

[ -k2 j] _ Isi"_o
.z_2:

(___.._)2 _-_L
. _3

(8)

We derive these equations in Appendix C, by implementing the pro-

cedure outlined above.
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2.3. The Current Transform Ysource (_,_) for
l

the Magnetic Dipole

At this point in the development_ we require an explicit

expression for the Fourier transform of the current loop (Figure i).

In Appendix D we show that for a time dependence cos Wot

Z ([,®): i__s__ifx _o] [_(_- %) + 8(_+ %)] (9)
16w3

where w is the externally-maintained driving frequency. By defini-
0

tion, _o is a vector normal to the plane of the current loop with

magnitude

2

o

o

J a2 = constant
O O

where J is the magnitude of the source current and a is the radius
O O

of the loop. The current transform (9) for the magnetic dipole is

purely transverse to the wave vector k.
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2.4 The Electric Field When'--_ << i
C --

Equations (7) and (8) give the transverse and longitudinal

components of the electric field in (k,w) space. The inverse

transforms of these equations specify the electric field vector

in (_,t) space. The inverse transform of a function f(k,w) is

i(_._- _t)
f(_,t) : I dm _ d_ f(_,w) e

Therefore, using (7) and (8), we have

Z (z),-
± kx, t) =-(4wi) _ dw 7 dk

_ei(_._-_t)

I Ew21
2 c2k 2 i Pi

J
S±

(2)z%
i i

2

Yo c

$Sl" Vo I

Ew

(w__._o) 2 i Pi

. Yo 3

(lO)
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(1)
E. (_,t)---(4_)

%{o

ei(k'_-wt)Ii-c_U_--/JL_"

2-c2k<i Pi ___._o)2i

(ll)

In principle, these relations solve the problem, for we may inte-

grate over [ and w to recover the electric field in _ and t. In

practice, the integration is difficult due to the factor

[ 2]2 z% i

(w- k'<) i o3

in the denominator. Separating the denominator into partial frac-

tions circumvents this difficulty for small streaming velocities

<< i . Let
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[ z2 [z,]j_ o2_2 i%.__ ($ __.Vof__._p_
_o Yo3

Mk+N Pk+Q
+

[(_- _'._o)2_ c2k 2 i

Yo yo 3 J

(12)

We show in Appendix E that

Mk =
_(_ _o)

N

z3-_ 2
t__l + I_ol oos2

Yo3 J |el 2

2

"z%i]
5'o

2

D
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Pk

Q

_2I"= M k cos

i

sJ_J _.2q

2

sJ'_

z2/3 i._%
Yo /

where

D

's-:,m22 2 t$i.)

= [ (%) Yo Ii+2 X 7, 2

J _o31

2
- 4 COS

2
£U

E w2

2 i Pi
OD

_o

sJ
2 i Pi

w 3

Yo

4

+ cos

, V
0

=_co=_-I_II<I

j z J)
i Pi

Yo

2 i Pi

w 3
Yo

2 ]

2



.°
0

17

v

We may expand the denominator D for small o (V° __ i),C

provided we restrict ourselves to velocities _ and frequencies
o

w such that the term

2
2 w

cos k

is sufficiently small. That is, we exclude those frequencies

within some small range (+ ¢_ say)of IE• w 21_

1/2

i Pi . If we per-
l

form the suggested expansion and disregamd all terms of order

I_l 2 and above, the coefficients P and Q in (12) vanish and

we have

J

i

_ c2k 2 ][ 2]2 E _iz %i )2 ii (w- _._
o _o 3

#o

2® (_ • V )
0 I 2 i i

2112[Ew 2

i Pi w
c2k 2 _

2
Zw

i Pi
]
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But equation (ii) and the "distortion" term in equation (i0) are

v

already at least of order __oo Therefore, if we again disregard

cterms of order , we find that

_(z),.
± _x_t) _--- (4_i) Z dw r dk

ei(_'x- wt)_.
uo Js±

c2k 2 E w 2 I
- i Pi J

(13)

- ei(['_ 7 )k - _) (Zs. o

2 E _ w - -
w - i i i Pi

(14)

2
l

which are correct up to terms of order I c-_°l The transverse
|

field (Eq. 13) is the same as the zero-streaming limit, but the

longitudinal field (Eq. 14) is new. Using (9) for the current

transform and removing the _ operators from the integrand

(k _-iV)_ we may write (13) and (14) as
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_±(l)(_,t): i

420
V

%i

w[_(_-%) + 6(w+%)]e i(_'_-wt)

2 1 Z_
2 __ i

e

(15)

V

(16)

The transverse electric field is undistorted for small streaming

velocities; one would obtain the same expression for an oscillating

magnetic dipole in a stationary plasma. On the other hand, the
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longitudinal electric field is directly proportional to the plasma's

streaming velocity _ ; Eli(I) vanishes when _ = 0. This is
O O

despite the fact that the source current is purely transverse.

We now perform the k and w integrations (Appendix F). The

results, for 1/2

Wo --> i i + e ,

are

E±(1)(_,t) = - _ V X sin (a I _I - Wot) (17)

_,(1) (_,t):

where

2 " VX_o

%-i

1

a- c - %2

1
(z8)

For

i

> 0 , the fields are
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_±(1)(_,t) :

I -_ -b sin %t }

(19)

2
Zw cos wt

_,,(l) (_, t) : -
i Pi 0 o

V -- • V
C

-bl I
_o e

X

j

(2o)

i i

where b = i 1 w° •
2

z%
i i

Our results thus far are independent of coordinates. We

now choose the coordinate configuration in Figure 2. Let the y

axis of an (xyz) Cartesian system point in the direction of the

streaming velocity _o; the xz plane is normal to the direction

of flow. We place the dipole at the origin of the coordinate

system and let the plasma stream past. The polar angle _m'

measured from the z axis, and the azimuthal angle _0m, measured
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from the x axis, define the angular orientation of the dipole. The

spherical coordinates (r, @,_) specify the position of an observer

relative to the origin. In terms of the parameters and coordinates

defined above, the componentsof the transverse electric field,

Elr = 0

E-8 [ ]a cos(ar-wot ) sin (ar-Wot)

sin (q0-q0m) r - 2
r

E±_ [sin@ cOS@m - cos8 sin@m cos(_- q0m)]

[a cos(ar - _0t)

1
sin (ar - Wot)l [

JS
2

r

(21)
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1

For i P > _o > 0 ,

Elr = 0

El - -- e sin % sin (q0 - + 1 sin _ t
@ m o

[_ ÷ 7] sin_ot (22)

T,he components of the, longitudinal electric field_
I I l 2 11/2

for
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]n r

 o(Zo2)i Pi
(_I [sine cosq0 cos@ m - cos8 sin@mCOSq0 m] •

cos (ar-_ot)

r

2a sin(ar-wot ) 2 cos(ar-wot)l

]r2 r3

[cose cosg0 cos9 m + sine sin8 m
oos%_] •

a sin (ar- Wot )2
r

7

cos (ar-w Ot )-I

+ r3 .]

E"9o
sin_ cos8

m

a sin (ar-_ot)2
r

(23)
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For

i

>I_o I > 0, the components of ER 82ce

E.r =

(2)% z%
l i

I _ ]
Xw -w
i Pi o

(_)[sine cos_ cos8 - cos8 sinem m

-br
e

b_ + 2b + 2 1-_r 7 cos Wot

cos%] •

(2) (:o)_o E
i i

(22)iEWpi - w° [c°s8 c°s_ c°Sem + sine sinem c°SMm] "

-br
e

b + _ cos %t

(%)(sin_ c°S@m)e-br I_ + 71 cos _ot-

(24)
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2-5 The Magnetic Field B(_t) when k_° < < i
c

We use the Maxwell equation

-(1)
v x -C_E,I,:_ z _B'-"

c Bt

to find the magnetic field _(i) in the plasma; there is, of

course, no magnetic field associated with Eli(I), which is

derivable from an electrostatic potential. The results, for

B

r

i

Ekre
> wpi

2_o { [cos@ cos@ m

a sin (ar-mot)2
r

+ sin@ sin8 m cos(_ - qm)] •

-_o {[sine cose m - cos@ sin0 m

,a cos(ar-%t) _
r

a2cos (at- mot )rB = -_oSinem sin(q0-q%)
q_

cos(_-%)]•

a sin(ar-%t)r2 _ cos (ar-_ot!l}_ ]

a sin (ar-mot)

2
r

cos (at-u00t).l •

r3 J

(25)
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For

i

> 0

-br

Br = 2_oe -_ + [cos6 cose m + sine sine m
r

cos (q0-q0m)]cos _o t

B e _o e m m
r

(q0- q0m)] cos _ot ° (26)

I,__12_I__o_o__eelectrico_m_oeticfieldsWhen

are exponentially damped in space and the transverse electric and

magnetic fields are 90 ° out of phase with each other in time.



.
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III. INTERPRETATION OF THE SOLUTION

3.1 Field Distortion: The Longitudinal Electric Field

Equations (21) through (26) specify the electric and

magnetic fields which an oscillating magnetic dipole induces

in a streaming plasma. The equations hold for arbitrary

orientations of _o with respect to , subject to the restric-
V

tion that __o < < i.
c

Some observations are in order. First (and this is

perhaps the most interesting result of our study), it is

apparent that an oscillating magnetic dipole_ in the presence

of a streaming plasma s excites a longitudinal _I _+_ _ field

which vanishes when _ = 0. The longitudinal electric field
O

is coupled with the transverse electromagnetic field and both

fields oscillate at the driving frequency of the current source.

Yet, the source producing the longitudinal electric field is

V

purely transverse. Second, it is clear that for __o < < i
C

the transverse electric and magnetic fields are essentially

undistorted by the streaming plasma. Mathematically, this

results from the fact that _s(_, w) for the magnetic dipole

is purely transverse. For the electric dipole, on the other
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hand, _s (_'w) has both a perpendicular and a parallel component

The development in Appendix C predicts that when _ is non-

Sll V

zero, the transverse electric field will sustain an order _
c

distortion. The results of Lee and Papas (1965) confirm this

prediction. Finally, we note that for _o I_ _o (era= q°m = 90°

in equations 21 through 26), there is no longitudinal electric

field; an _i! only exists when _o has a non-zero component per-

pendicular to the streaming velocity v .
0

3.2 Power Flow: The Skewed Poyntin_ Vector

i
At great distances from the dipole, only the order --

r

terms in the electric and magnetic field equations are signi-

ficant. We find that the existence -- or perhaps we should say

the survival -- of a longitudinal electric field component at

large r skews the Poynting vector,

-_ C

s : _ (_x _) ,

away from the radial orientation that it would have in a purely

transverse electromagnetic field. Using equations (21), (23),

and (25)for _o ± _ and Iooi> calculate
o Pi_
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3o

2

_o I4na3) 2
S - w° sin
r 4w c3r 2

cos 2 (ar-Wot)

S = 0
e

2

4w c3r 2 i _i sin
e cos M cos2(ar-_ot), (27)

2 _z

( /
where n a = 1 _Uo2 ] .

The radial component of _ is the s_ne as it is in a stationary

plasma; the azimuthal component of _ is dependent on _o and

points in the "upstream" direction (Figure 3). Lee and Papas

find a similar result for the _i_+_ _po!e: The Po_.ting

vector is tilted a_ainst the direction of flow.

3-3 Power Balance: Mechanical Energy Transmission

Field [1956] has derived a generalization of Poynting's

theorem for a hot_ non-streamin_ plasma. He shows that for

non-zero thermal velocities there may be a flux of mechanical

energy -- in addition to the flux of electromagnetic energy --

across a surface enclosing the source. We derive below an

expression for the total energy flux in a cold_ streamin_ plasma.



31

In order to do this, we return to the cold plasma equations

of Section 2.2. Using the two Maxwell curl equations, we may

easily showthat

_. _ + _u _ _.- __._
8t Jp s '

c 1 (E2+B2)where S = _-_ (_ × B) is the Poynting vector; o = _-_

is the electromagnetic energy density; _ is the external source
S

current density; and _p = X e. n. _. is the internal plasmai l I l

current density. Next, we use the equation of motion (with _i = i)

and the equation of continuity to express ei ni vi • g as

the divergence of a mechanical power flow plus the time derivative

of a mecheLuical energy density. The dot ...... of one_ru_c o _ momentum

density, mini_i, and the force equation for the ith species is

(28)

V.

since _. • __l X
1 C

= O.
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Consider the second term in equation (28). Using

appropriate vector identities_ we find that

n. v. • • V = n. _. • V
l 1 _ 1 1

- _ V" E - vi [v.(n i

But by the equation of continuity

_n.

(ni_i) 1V- = _t

Therefore,

i I 2 -_ 2 _ni }
m.n V. (vi" V)_i : 7 mi V. [(niv i )vi] + v.mira m _t

(29)

Now, consider the first term in equation (28):

m.n.v. • -- =
ill _t i mi { 5

_ [nivi 2] (30)
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2 _i
The v. terms in (29) and (30) cancel. Consequently,

m _t

_" • n.m.v. + V - [(_ n.m.v. )
i 1 1 1 m 1 1

and the Poynting's theorem appropriate to a cold, streaming

plasma is

i nimivi2)_iv-[g+.z(-_ ] +
I

i 2
-_- [_ + z (-_ n.m.v. )] = -_' • Js

i zzz
(3m)

We will neglect the time derivative of the energy density in

this equation; for sinusoidal oscillations, its time average is

zero.

Equation (31) suggests the possibility that mechanical

energy transmission may be associated with the longitudinal

electric field. Let us examine this idea. First, we enclose

the dipole within a large sphere of radius r and form the

volume integral of equation (31) -- without the energy density

t erm.
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Using the divergence theorem for the integral on the left, we

find that

i nimivi2 ) _i ] (32)

where the volume integral on the right is the external power

input• The surface integral is equivalent to

z 2)da [Sr + E (_ n.m.v, vi ]
i lml r

(33)

A
since the unit vector n is parallel to r.

In our linearized version of the problem, _. = _ + _.(i)
1 O 1

and n. = n + n. (i) We may calculate both _.• _± J(x,-t ) and
1 O. 1 1

n. (1) (_t) with the results of Section II. For bo ± V and
1 1 o

_!l)(x,t) _-- - sin (ar-_ot) .

Ic r!

)sin 8 rA * [na] $

(34)
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n°

1 (n°ei 1(i) (x,t) : - mi _ _ w°7 n sinScos_r sin (ar-wot)

(35)

7
where we have retained only those terms of order (_) in dis-

tance.

When we linearize the mechanical power part of (33) and

use (34) and (35) for the first order perturbations, we find

that the only terms which survive the surface integration_ as

r becomes infinitely large, are

2 i o m
qo

[ioli E ni m. v v.
2 i m z

and

v. (i))Vo r Ir
V
0
r
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_Wenote_e_atelyt_att_esete_sv_i_when41<l=O
o

as expected.) The latter two terms are of order -]_ 8_]d may
c v 2

be neglected. However_ the first term is of order o since2

(i) c
v. is not a function of v . The time-averaged mechanical
l o

power flow is _ as a result;

[ i 2 _]_ da i_ (_n.m.v.) v.i I 1 1

time average

2 v 2

<)(})($)(°). (36)

Therefore; in principle_ there is an outward flow of mechanical

energy when the dipole oscillates in the presence of a streaming

plasma s although the energy transfer is negligible in the limit

of small streaming velocities. In addition, since the Poynting

flux is accurate only through terms of o(Vo/c), the expression

(36) is of no use in verification of the conservation laws.

We compare the outward flux of mechanical energy with

the outward flux of electromagnetic energy; as given by the first
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term in equation (33). The time-averaged electromagnetic power

output is

da Sr

2 4 3
i _o Wo na

3 c3

time average

(37)

{v°1for small -_- , regardless of whether the plasma is streaming or

stationary. It can be shown that performing the volume inte-

gration on the right hand side of (32), with the fields in (21),

also gives equation (37) for the power input. The additional

flux of mechanical power, as given by equation (36) is 0(Vo2/C2)

and thus negligible. I

in this context. Both the time averaged radial Poynting flux

and the time averaged volume integral of _(i) . _ can be
s

easily shown from equations (22) and (26) to be identically

zero. No electromagnetic energy is radiated into the plasma.

3.4 Momentum Conservation: The Mechanical

Force on the Dipole

The streaming plasma exerts a mechanical force on the

dipole -- a force which tends to push the dipole "downstream",
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in the direction of flow. Let T be the Maxwell stress tensor:

l .... i T (E2 + B2)]T = _ tEE + BB -

We may calculate the force which acts on the dipole by enclos-

ing it once again within a sperical boundary surface S and

evaluating the integral _ • _ da over S, where _da is an

outwardly directed element of surface area. We have

_._da = _ r
sine d_ d_I Er (Er _ + E_$ + Eq0$)

+ B
r ^ q0c_@) _i _ _r 2 2 2(Br_+B_ +_ - _[( _ +E ).... _

(38)

This time_ in order to perform the areal integration_ we must

allow for the fact that the unit vectors r_ _ and $ are_

themselves, functions of their angular position on the surface

A

of the sphere. Therefore_ we express r, 0, and $ in terms of
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A

the fixed Cartesian unit vectors _, _, and _, where 8 points

in the direction of flow.

: (sine cosqo)_ + (sine sinq0) _ + (cos8)

$ = (cose cos?)_ + (cose sine _- (sine)

A

: (-sin_)_ + (cosy) (39)

Using (39) and the complete field components (21), (23), and

ii I 1(25), we find that for _o ± % and w° > E 2
i Pi

the time-averaged value of (38) is

°_s _ " _ da

% m° E ni a v
: _£o

6c 4 c

time average

2 (4o)

The expression above is equal to the time average of d_P
dt '

where P is the mechanical momentum of the particles (and the

dipole) plus the electromagnetic momentum of the fields within

the volume of the sphere. Specifically,
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4o

d2
mechanical i

dt : _ [ p[ + -- (_ × g)] d3xC

Pfield = i

But the time average of the time derivative of Pfield is zero.

Moreover, (40) is independent of r, the radius of the sphere.

In the limit as r _ O, the sphere encloses only the dipole bo

at the origin; it no longer contains any particles of plasma.

Hence, we may interpret (40) as the effective mechanical force

which the streaming plasma exerts on the dipole. The force is

parallel to the direction of flow (Figure 4), and it vanishes

( I:"_ _ _u = O or 2 is zero. An equal and
_e_ either E w 2 --

i Pi

opposite force must be supplied externally to keep the dipole

in place. For _o parallel to , the force on the dipole

vanishes. The mechanical work per second necessary to drag

the dipole with velocity _ through a quiescent plasma would
O

be given by dotting Equation (40) with _ .
o

3.5 Low Frequency Limit: The Penetration Depth when v% = 0

There is one special case in which the collisional fre-

quencies v. do play an important role in determining the fields:
j
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2 > > all _j > > w° (i.e., the "d.c." limit). Equations

(22), (24), and (26) showthat the fields of the dipole fall off

exponentially with distance when

i )l > 0 .

The damping decrement b in these expressions_ where

2 "_ 2

b= i o 2

z i

applies to the limiting case of a collisionless plasma with the

restriction that IW -e ! > _n > > all _ before the_o.
pj - j

are set equal to zero. As shown in Appendix F_ the damping

decrement with a non-zero collision frequency is

b -- _- [ 2 + B2] _, where

2

- z P'_
2 j (%2+ v 2)c j

13 2]% . a
- 2 2

c (% + vj 2)
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ERR_A

Radiation from an Oscillating Magnetic

Dipole in a Stremming Plasma

by JOHN E. BF_GESON

Page 2, last line:

Replace word "dipole" with "field" to read as follows:

"magnetic field is tilted against the direction of

plasma flow."

Page 9, the line appearing just above equation (5a) should read
as follows :

- 1 [(i) ,,"fOr n! I) and v! ) in terms of . The result is .
l l

Page 56 :

In the third and fourth lines from the bottom of the page

Appendix A should be substituted for Appendix B to read as follows:

"This is the wave equation_ with the expression derived in Appendix
--9

A substituted for the plasma current density jp. For conciseness_ ".
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The preceding expression is applicable to a slowly streaming

plasma when w > > v.. Whenw is smaller than the v. and
o g o j

the streaming velocity is zero, the damping decrement becomes

i

7 (%2+ - 1 + (%2+ , j2)

(41)

This vanishes in the limit as _o goes to zero. Consequently,

the _r and _ terms in the field equations disappear and there
r

is no longer any exponential damping. In fact, we recover

the B field of a static point magnetic dipole immersed in a

plasma (which is the same as the vacuum field, notice):

B : --2% [cos0 cose + sin0 sin8 cos(? - ?m)]
r r 3 m m

_o

Be = 7 [sin@ cos0 m
- cos@ sin@ m cos(q0 - q0m)]

_o

B =-- [sine
r3 m

sin(_- _)] (42)
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The transverse electric field vanishes when w° = 0 (as it must)

and the longitudinal electric field disappears when _ = O.
o

We may use equation (41) to derive an expression for the

distance away from the dipole at which the fields are damped to

i
-- of their initial amplitude. For very low frequencies, the
e

damping decrement is approximately

2

It can be shown from the equation of motion and the expression for

the current density that the conductivity _ is given approxi-

mat ely by

2

j vj

Hence,

b --_

i

c

/
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We define the depth of penetration_ 6, as the reciprocal of b,

so that

6 _ C

21_ a _U
o

This is the same as the standard "skin-depth" formula [see,

for example, Jackson (1963)] for waves incident on a good

conductor. The penetration depth is infinite when _o = O, in

agreement with equation (42), which shows no exponential attenu-

ation.
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IV. SUMMARY

Wehave studied the effect of a cold, streaming plasma on

the electric and magnetic fields of an oscillating point magnetic

dipole. Wenow summarizeour results.

First, we find that the streaming plasma does not distort

the magnetic dipole's transverse electromagnetic field for

streaming velocities very much less than the velocity of light.

However, we also find that a lon_itudinal electric field appears

in the presence of a streaming plasma and that as a result, the

Poynting vector is skewed "upstream", against the direction of

_±_ma flow. There is an outward ±±uw..................u± ener_-

associated with the longitudinal electric field, but the energy

flow is negligible for small streaming velocities. Finally, we

find that the streaming plasma exerts a "downstream" force on

the dipole. Both the force and the longitudinal electric field

disappear when the dipole axis is parallel to the direction of

flow.

These results are theoretical; they are derived from

Maxwell's equations_ a dynamical equation and an equation of

continuity as applied to a point magnetic dipole in a slowly
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streaming plasma. In closing, we should like to propose a

simple experiment which one might perform in order to verify

(or to discredit) our predictions. The experiment we have in

mind is a measurement of the mechanical force which a stream-

ing plasma exerts on an oscillating magnetic dipole. Speci-

fically, one could measure the force required to hold the

dipole stationary when the axis of the dipole is normal to

the direction of flow. The force should vanish when the two

are parallel.
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APPENDIX A

Use of the Dynsmical Equations

A.I. Derivation of the Equation of Motion

The covariant equation of motion for the ith plasma com-

ponent is

d__ (Yivi) : _ E +- x B"dt m. c
1

d
where _=

dt
+ v. V and v_ -

_t l -i_ 2

V.
1

1 2
C

We re-write this equation as

[m. e. i (Vi_ _ __ _____! : 1 _ +_ _ 1 dYi

dt miY i c _i dt "

(_)

The last term on the right hand side of (A_I) is small since
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.

i

Yi

dY i

dt

V.
i

2c 2

d (_ 2dt i'_i) : Yi

v.7. _.
1 1 1

2 dt
c

v.{. _.
1 1 1

__ + 0
2 dt

c

(A2)

Therefore, the lowest order approximation to the equation of

motion is simply

I :__3_I +-(v. x
dt mi7 i c l .

(A3)

dr.

l in (A2) and neglect terms of
Iffv4_wesubstitute (A3) for d--_-

0 |_-I the result is

d7 i _. _. eivi l 1

2
_i dt c miTi

[[ i _+- ({.x
c i

e. _._.
1 1 1

2
miTi c
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Hence, the first order approximation to the equation of motion

is

dvi _ ei _ + i ( x B) - 1 1

dt mi_ i c c2

correct up to terms of 0 (vi4/c4).

text.

This is equation (ib) in the

A.2. Derivation of _.(1) and n. (1) as Functions of _(i)
l i

a. First order velocity perturbation_ _i (I). We solve the

linearized equation of motion (2b) for _. (i) as a function of _(i).
1

In (_,t) space equation (2b) is

_. (i) [[ (v° _(1))_{ { t1 (i)_ ei (1)+ 1 o o _(1
_t + _" V_. - -- x 2

o 1 mi_° L c c ]

Fourier transformation (V _ ik; _- _-iw) gives
_t

e. v'v'

i _o i (1)+l(_ x )- 2-i__.(i)+ iv!)(_. )- _ _(i) o o _(i
i 1 mi_ ° c o c
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By Faraday's Law q × _(i)

in transform space. Hence

e°

m mi_ o

c _t
, or _(1):[c f × [(1)]

_(i)+ { _-C) 7o _l o o-- x(ffx )-
2

e

Using the identity A X (B X _) : (A • _)B - (A • B)_, we find

that

e

i{(1)[(_._o)_W]: i
i miY °

[(l)+ZI[mVo.E.[.... (Z_ "o i] 70_(_._)_(_ o o ._(1)
c2

-. o w- i o, _,(l)
-ivi _ miY o 7

_7
__ _(l) o o+ - (k" _o) 2

C

The solution for _. (i) is
1
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(1) e.
V° _--

mi_o(i®)
i+

-_-_ -._kv w v
0 0 0

c2( -

which is equation (5a) in the text•

(z)
b. First Order Number Density Perturbation ni .

linearized equation of continuity, (2a), is

{1)

The

_.(i)
- (i) (1))1 V " V. + (_7 n. • _

_t + no. i l o
l

= O.

After Fourier transformation, the equation becomes

-i (W- k • _o ) n i (1) + i n _-_ . _.(i)) = 0

o i i

Therefore,

(i)
n.

i

n (_• _.(1))
O. l

1

(_-_•_)
0

/

We substitute expression (5a) for V. (I)
1

• The result is

<
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n e.

(l) °i _
n.

z m ivo(im) (m-g. vL )

i +

__+v
o

which is equation (5b) in the text.

A.3. The Plasma Current Density _p(1)(k,w ) as a

Function of _(1)(_,m)

By equation (3) in the text (without _s),

[jp(1) = _ ei n _.(i) +
• oi ii

(i) using the results of A.2:We substitute for _.(i) and n. ,
i i

]
n e. -_

- (1) o • f{ w #v
jp = _7. l o oo

i mi (iw)'fo + _o(_-_ ) c2(_-f_o)

+ 0 . +

(®-f"_ )
o

_(z)

2
Since m

P.
l

- 4w

2
n e.
O. 1
i

m°

1

(plasma frequency)
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i
+

(®-_.vo)

i 2 ®(_-k'{) _(_'_o)
- 0

2 2
(®-_._o)2 c c

o o

#(z)

or

4_(i_)_o i Pi

(k2_w2/o 2) {{ ]

+ )2 0 0 I "

+
i

(®-Z._o)
o o

_(_)

The expression above may be substituted for _%(1) in the wave

equation; the result is equation (6) in the text.
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APPENDIX B

Use of Maxwell's Equations

B.I. The Wave Equation

We derive a wave equation from the two curl equations of

Maxwell, (ic) and (id) in the text. These equations are

_x_ l _ and_x_ l_ + 4_...... j Their Fourier
c _t c _t c

transforms (V _ ik and _- _ -iw) are i_ × E = i_____ and
Bt c

ik X B - iw _ + 4_ _.-- j _ respectively. We take the curl
c C

of the first equation (ik X [ ] in _ space) and substitute

for ik X B in the second. The result is

i-_[_ x (_Tx_)] - c T j

or

W 2 4_iw _.
(_7 E) _+k2g = --_ g + 2 J

c c

We re-write this equation as
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It is now equivalent to equation (4) in the text, without the

expanded current density.

B.2. The Two Scalar Maxwell Equations

Weremark here that it is easily shownfrom the vector

Maxwell equations and the equation of continuity that

_-_(v. _'): o

a__ (v. _' - 4_ p) :o
_t

so that if the scalar equations are satisfied initially, they will

be satisfied for all time, as a consequence of Eqs. (la), (ic) and

(ld) alone. We can determine the charge density either from Poisson's

equation or from Eq. (6) when static fields are absent. The latter

procedure is more convenient.
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APPENDIX C

Derivation of _(i) (_, S!)and Ell(I) (_, w)

as Functions of _source (_' _) and O

In this Appendix we carry out the program outlined on

pages lO and ii of the text. We begin with equation (6):

2 o2_2) c2_,] {l)E_(_ - *

%
:::: 1 --,1 + [iV + _'k]

(___._o) o o

+

(k2__/e2)%%
{1) : _ 4_ iw

S

This is the wave equation_with the expression derived in Appendix

B substituted for the plasma current density jp.

-" {i)
we write this equation as R = - 4_ im Js'

For conciseness_

where R may be

I! • • • II

termed the resmstmvzty tensor. With the symbolism
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A

2
Z_
i Pi

2

E_ ( 2)
_ i i Pi k 2 _

o2

H

2
Zw
i Pi

"YO

o o

C.I. Resolution of the Wave Equation into

Transverse and Longitudinal Components

5 (1) explicitly in termsFirst, we write R • = - 4_ iw _s

(z)
i(I) where "l" and " II" mean perpendicular andof _El and El

parallel to k.
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- _(i) - _(_o Zi(I))

- _Vo(Vo""_(1)) + (j _H)_Il)

- A_(_° _,,(1))_ A V° (_-%(i))

- B_ (7o •%(i)) : -4_ i® f
s

The equation above is a partial resolution of (6) into components

which are perpendicular and parallel to k. Similarly dividing v%,

= v + v , we complete the resolution as follows:
o oi on

Transverse Component :

2 c2k2 HI _(1) B [_[(_ - - - 0
_(1)]

oj.

• -B[_ 0-A [_ _,(i)]_o_ Z(1)] _ :-4_i®Js
o± i
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Longitudinal Component

O

_(1)] _ _ A[? • _ _<zJ]
o 11_L

-AE_. _,(Z)]T - BET • _''<zJ]T _ BET'o_,(I)]T
Oli 0 ± 0 II 011

4w iw "
= - J Sll

C.2. Solution of the Transverse Component for v - E (i)
o ±

Next, we dot the velocity vector v into the transverse
o

component and solve for _ . _ (i)
O ±

2 c2k2 (1) (i)] 2
[w - - _] ET° _ ] -B ET° • _' v

j_ t O±

2
(1)] 2 + S[7o _,,(1)] v - 4= iw (ys T )

AEk Eli Vo± o± ± o

or

DE% 2] _ 4w i_ [-" " _ ]_(1)] = F [En(1)Vo._ a_± o



d

6o

wh er e c2k 2 2D =w 2 H Bv
O
l

and F =Ak +By .
°ii

<i)
C.3. Solution of the Longitudinal Component for Eli

We write a scalar equation for _i (I), since En (I) _

you U _" .J SII

(i) k] (I) k] E,,(1)
[ 2 _ H] Ell - A[Vo. Eli - A[Vol |

-B v E, = A k[ "'E J] + B v IV .]_ (i)]
o11 ± oll o ±

- 4wiw j
Su

or

aE.<l) ;(7o._i<I))-4_i_Js.

where
011 On
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(i) - Z (I)_d _ (i)
C.4 Simultaneous Solution for E|i _ v • l ±

(i)a. Solution for E| . We now have two equations in E.

(i) proceeds as follows:and v [ (i). The solution for Eu
o l

F22]i- o-_ Vo± : 4_GDi_F (is,. _o) 4_ai_(is,,)

: _ 4w im

E,I (1) [ GD_F2v 2]

° i

F(ls• %) + D(Js,)]

b. Solution for _ • E (1).

(i) to solve for ? • Z (i).
for Eu o i

Next_ we use the expression

D[_ "E (i)] : F[En(1) v 2]
o i o i s.t o

4w i_D

[GD_F2v 2]

o±

[{ . _,(i)] :_
0 i

[o(_. 2)]• _o) + F (is,,Vo.

4w i_

[GD_F2v 2]
Ol

[a(ls_"_o) F( %2)]+ Jsl!
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c. Solution for %(1) Finally, we return to the transverse

component and solve for E (1), remembering that F = AR + Bv ."
± Oll

r2 -c2k2 - HI _(i) _ BETo" _-(1)ITo.- F E,,(1)v_ ---4_i_,"Js
o± ±

a(ys. 2)][o_- e2_2- HI _ (i)+ 47 i® B • Vo) + F(j v v
± [GD_F2v 2] s. o± o±

o I

+
4w i_F

[GD_F2v 2]
Ol

± [ W2- e2k2-H]

FGsi. 7o) + D(Js)] _ = - 4_,,_ J's.
° 1

_sl +

[ (BG+F2) (J-"s± "_ )+F('D+BVol2)(Js. )] _o,_
0 " " ,

[ GD F2 2 ] J- Vol

C.5.

become

Expressions for _(1)(_,w) and El!()(k'_) when jsu = 0

For " : O, the solutions above for E (i) and _ (i)
Js. _t
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{J's. F(Bo+ F2) (_s." _o)] _o.
(]_)= _ _i_,, +E" [ _-c2k2-_] [GD- F2 v 2]

o I

(_ -_)
4_ im F s± o

[ GD - F 2 v 2]

o±

We may make these expressions more meaningful by writing F,

BG + F 2 and GD - F 2 v 2

o I

explicitly in terms of W, k, m and _ .
p o

The factor F in the numerator of EI(_I):

F = Ak +Bv

°i!

"_o(__"_o) _o (_"_o)2

F

liEw2

_,o(_-_'._o)2

v
°11

k w VoiJ2
c

The symbol B:

B

2

.=%1

_o

(k2 _ 2/c 2)
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The symbol G:

G = m2 - H - 2Akv - By 2

011 011

2

Yo % (® - _._ )
o

_[:%:)F
Yo (w - _" . _,)2

0

C
% (_,- _'._o)2

The factor BG + F2in the numerator of I,_(i)

BG + p2 =
Pi _ [ iPi ]

V (U) _ _ )2
o - " o _' Yo I (_- k . 7o)'

+

%m2_

Yo I

2 (° 1k--_ %.

(__ _'. _o)_
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BG + F2 -

2

i Pi

_o

2

c2(w_ _._ )2
o

im _ 2]
_ c2k 2 i Pi

_o

The symbol D:

2
D = _ - c2k 2 - H - By 2

o±

2 _c2k 2

2
2m
i Pi

2

.z%i1

Yo Yo

(c2k 2 _ 2) v 2
o±

_ _2 2
(_ - K'Vo] C

The Factor GD-F 2 v
o

GD F2 2 2-- V

o±

in the denominators of _ (l)
2

Yo (w - k'.v' )2
o

_ c2k 2 I21]
Yo

(2)[ 2_ _2 _ °_Pi (c2k2_ 2) v

,'o (-:- _-\)_ 7
i o±

_o (_ - _'_o)2
2

c
]
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I 2

_ c2k 2

2
E

%/o

2 2

I 1
7._ i 2 2

i- i Pi c c

_o (w - k'v o)

I_ Z r,w
2 2 c2k 2 i _Pi i Pi

= ® _ _ i - _°3 (®_ _._)2
7o o

Using the preceeding results, we finally obtain equations

(7) and (8) of the text:

__(i)(_,_): __±

41-[i_

[ 21Em

2_ c2k 2 i Pi

"go

Pi
-2

J s_ -

2

Yo c

V

± o ok

Ew2 1
_ .2 i Pi

- k.v o)
7o

which is equation (7), and
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r w _m

_ e2k2 i Pi (__ ff._ )2 i Pi

Yo 7o o No 3

]

which is equation (8).
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APPENDIX D

Derivation of _source±(k,_) for Magnetic Dipole

Consider a small current loop of radius %, with axis paral-

lel to the z axis of an (x,y,z) coordinate system (Figure i).

The current density is (in terms of the unit basis vectors _
er2

#% #% ):

e_ ez

-2

J s = J eA
o

6 (_,- %)8 (z) ,

where Jo is the loop current and r_ _ and z are cylindrical coor-

dinates. This expression is equivalent to _s = Jo(t cos

A

- ex sin _) 6 (r - aO)6 (z), in terms of the fixed Cartesian unit

A a
vectors e and e .

x y

Transform in Space

The spatial transform of the preceding equation is

J /--@ --@%

" _K._) ^ ^
_(_) = (2W) 3 f rdrd_dze -I (ey cos_ - ex sin_) 6 (r-%)6 (z)

J
O A

Y z
_ ey x(2w) 3 f rdrd_dze-i(kx cos_ + k sinq0)r-ik z(. cos_ - e

sin_)

6(r - %)6 (_).
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The r and z integrations are easy:

dz _ rdr e-i(k x cosq0 + k sin _)r - ik z

y z 6(r- a )6(_.)
o

a e-i(k x cosq0 + k sin_) a
o Y o

For the _ integration we expand the exponential:

JoL_o 2_
2

_(k) : ] d_ [1 - i(k x cos_ + ky sinq0)ao + 0(ao ) .... ](2TT)3 0

= -i JL°a°_ 2.

(2_)3 f o

A
[ eA cos_ - e sinai¥ x

d_ [_y (k x cos 2 _)- eAx (ky sin 2 _)]+ O_Joao4_

Y(Z) -i
(8_3) ( oox y y +0 a .
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A
By definition_ for e

z
normal to the current loop,

J;l
a 40
O

J
o

--_ co

2
J a _ constant
O O

_z

Hence_ in the limit of a point dipole_

_(_)=J_zCl[ ^18w3_ (kY ex)

F
: i___i(_ _z)_e

8_ 3 L_ x

F
= i____C8TT3 L( _ x _)x

_ex + (k' x _)y _Yle

8w3

where _ still has arbitrary time dependence.
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Transform in Time

The temporal transform of _(t) is

_(W) = -_ _ die iwt _ (t)2'n-

We specify a sinusoidal time dependence for the current loop:

_(t) : _o cos Wot ,

where w° is the external driving frequency. Consequently,

2"n 2 " _o

: _ [6(®- %) +_(®+%)] _o

_(_, w) for Magnetic Dipole

Therefore_ the Fourier transform of the current loop is
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T(_',w)- io I_'XFo] E6 (_.- %)* 6 (®._)].
16_3 o

The current density for the magnetic dipole is purely transverse

since

° a(_,®)= o.
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APPENDIX E

Derivation of Ez(I) (_,t) and _i! I) (_,t):

Separation into Parial Fractions

We wish to find the inverse transforms of equations (7)

and (8) of the text, using equation (9) for _(k,w). We facilitate

their integration by separating

c2k 2 i'-Pil (w- k'_ )2 i Pi

j o yo3

-i

into partial fractions. Let

1

_w r,w

c2k 2 i Pi )2 i.- _- _.V i

70 o 7o -_

_Y< + N

lw _ c2k 2

+
Pk + Q

o

z w2-1

i Pi. I

UJ
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We will solve for the unknown coefficients M_ N, P, and Q.

Polynomial Formation

The equation above is equivalent to

(Mk+ _) [_32 - 2_(_" _o) + (_. _o)2]

+ (P_+Q)[al 2- c2k2] = 1

2

where _12 = _2 i Pi

- "go

2

P2
m_ d _]3 = 2

i

3
_o

Expansion of this expression gives a polynomial in k:

(M_32)_ - 2_ (_. _o) + _ (_. _o)2

+ N_32 - 2®N (_. _o) + _ (_'. _o)2

+Po12_ P c2k3 + Q_I2 - Q c2k2 = i



75

Solution for the Coefficients

The preceding equation holds for all values of k.

For k = 0

2 2

QO% : i - NO_3 (El)

For k _ O, we equate coefficients, writing

COS _ •

Since all values of _ can be reached with k > 0 and the appro-

priate polar ang!es_ we consider only positive values of k.

Equating coefficients of like powers of k gives the following:

2 2

MQ 3 cos I + P_I = 0k: - 2w N v° (E2)

k2: - 2w M v cos I + N v 2 c°s 2 i _ Q c2 = 0
O o

(E3)

2 2 2
k-: M v cos l - P c = 0

o
(E4)



76

Equation (E4) yields

v 2

P = (_) M cos 2 _ . (E5)

We must now solve (E2) and (E3) for M and N. Using (El) and

(E5) in (E2) and (E3), we obtain

v 2

[0_32 + (_) QI 2 cos 2 X] M- 2w N Vo cos X = O,

[2®o12 cos x] M+[012 2- V
Vo 0 2 n32 c2] 2COS _ + N = c .

We solve these equations simultaneously for M and N. From the

first equation

M

(2w v cos _) N
O

v 2

[_32+ ('-_) O_l2 cos 2 _]

Substitution in the second gives
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I[ 0`32 v 2 2 2

. + (°12 cos
v o

_ [_w2 p2 (Z_)2 2cos _]

2
[0`3 2 + (_)2 p%2 cos X].

Therefor% the coefficients M and N are

N

[0`32 cVo)2 2+ -c- _%2 cos x]

M

2w v cos _.
o

4
n3 D

where the denominator D is

D
[Vo )2 O'l2

1 +2 -T -_

V
2 o 2

cos _, - 4 (7-)

2 2

® 0`i 2
---g-- cos
O_3

Vo 4 p4
+ (-g) ---g

0`3
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Equations (El) and (E5) supply the remaining coefficients,

V

p = (_)2 M cos 2

Q 1 [i N _3 2] ,2
c5

in terms of M and N.

It can be shown that the expressions above for N and Q hold

for all values of k (both k > 0 and k < 0), whereas the expres-

sions for M and P change sign for k < O. However, we note that

M and P are multiplicative with k in the numerators of the partial
fractions. Hence for all k

Mk

Pk

2_

D 03

v

(.._)2[_L_ (_._o)] cos2
D o 3
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APPENDIX F

Contour Inte6ration of E! l) (x;t) and Ell(l) (_,t):

The Inclusion of Collision Damping

For _° < < i_ the inverse Fourier transforms of _w)
C

_nd _i)(_ w) are

_i I) (_,t) _ i
4_2c

×

2
Ew
i Pi

4_ 2

w [6(_-m o) + 6(W+_o)] ei(k'_-wt)}

i(_._-_t)
[6(W-Wo)+ 6(W+wO)]e

(k+ _) (k- _)

(15)

(16)
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where a2 = __2c2I I

(16) of the text.

zo2]i Pi

2 . These are equations (15) and
W

We must integrate over k and w.

F.I k Intesration

_( - _-(i),-_The _ integrands for i) (x_t) and _iI kx_) are the

same, viz. ei(_. _ )

(k+a)(k-a)

We perform the k space integration in spherical coordinates_

letting

_j
J

i(_'_) 2w +i oo k2 i(kx cos ek)

e : f d_K f d(cosSk) f dk e
(k+a)(k-a) o -i o (k+a)(k-a)

Since the integrand is azimuthally symmetric_ integration over

d_k yields a multiplicative factor 2w. For the ek integration

÷i

2_ [ _(oosek) _ _
-1 0

i(kx cOSek)
k2 e

(k+a) (k-a)

2_ j,-r- dk
Ix

o

k [e ikx - e-ikx]

(k+a) (k-a)
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The k integrand is now an even function of k; hence_

2_ f dk k[ eikx -ikx]

lx 0 (k+a) (k-a)

_,-co

TI

ix$
--CO

ikx -ikx]k[e - e

(k+a) (k+a)

= I (I_I, w) ,

where x has been written explicitly as I_

We use complex contour integration (Figure 5) and the

residue theorem to evaluate l(Ix_,_ ). Some care is required since

the poles of the integrand lie at k = + a on the real axis.

The integral can be made well defined in one of two ways: (i) the

requirement can be imposed that only outgoing waves be present

in the result; or, (ii) a small coilisional damping term

__._.(i) can be added to the right hand side of Eq. (2b), where
J J

_j is the (assumed constant) collision frequency for the jth

species.

We choose the latter procedure. Which we use makes little

difference, since we usually deal with the case Wo, _j > > all _j,

so the collision frequencies do not appear in the eventual answers.

But there is one important exception to this: the case all

wp > > all vj > > the "quasi d.c. - case."
j _0 ;
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When either % > w > > all v or > w > > all v.

I v 1 pj j _pj o _(i) J-- _ <i° , the net effect of adding the term - v. . on the
c J J

right of Eq. (2b) is simply to replace the mass m. in all the
J

equations with m. (i + ivj/_)._ This means thatJ

2

2 P_

PJ i +

2
a w2 - _ iv.

c J (i+

We re-write the latter expression as

2

= -_ -r,

and set

+ iw 2 }
2

w __ j

-- c2 j (2+_j2)

2][2 z 2)c j (2+
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( IlCase I: I Uj I > Z 2 7 > > aii '_.
j pj J

More precisely, we consider the k integration when _ is

positive, i.e., when

2

o < z %J <i

j (2+ V j2)

• _2] 1Let the (now) complex a 2 = c_ + i8 : pe m8 , where P = [ 2+ /2

e

and tane = _= ;then a : I_I e But the latter expression is

equivalent to

a

I (_)] + i sin i I
[7 tan-1 [i tan-1 (_)]

For j_ < < i (with _ positive), 7 tan-i ( ) -_ _ ( )"
cf

Therefor%

cos [7 tan-1 ( )] _- -_ 1

[4o, 2 + B2_/2

1 (_)] _ __ __sin [7 tan-1 _ 1/2 2_
[4_ 2 + B2]
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)

and

For w > O, B is positive, whereas for _ < O, B is negative.

Hence, the complex poles are slightly above or slightly below

the real axis, depending on the sign of w (Figure 5A). By

Cauchy's theorem, for _ > O.

ke ikx upper _ wiei_l 3 1 e-(_) (2_) I_I
+mdk• (k+a) (k-B) contour
--CO

ke -ikx lower i(_) Ix I e-

_dk (k+a) (k-a) contour ) : -_ie

Therefore,

2_2 _(_)I_I
I (I_I, W) = -- e

_>% I_I
e
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Similarly, when _ < 0

272 -i (_)1_1 -(_) _)I_1
I (1_1,_) = e e

-_ <-% I_1

I 2}1 IICase II: X w 3 > _ > > all v.

i Pj J

Again, to be more precise, we consider a case where _ is

negative, i.e., where
2

w

j (W2+ v. 2)
J

> i;

bl_]t we still assume Hence, tan -1 (_)is slightly

less than or slightly greater than 180°_ respectively, depend-

ing on whether w (and therefore 8) is greater than or less than

zero. As a result

1 (_)]cos [3 tan-i

!
2

n

21o4

l (_)]sin [3 tan-i
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and

a -_

For _ (and 8) > O, the pole is located just to the right of the

positive imaginary axis at a vertical distance _ from the origin,

whereas for w (and B) < O, the pole is located just to the left

of the positive imaginary axis at the same distance from the

origin (Figure 5B). Using Cauchy's theorem, we again calculate

I (l_i,w). For w > O, the two terms of I (_,_) are

ke ikx_codk upper _ __ _ie -(_)_ ei(_)12_I|_

(k+a) (k-a) contour
--CO

ke -ikx lower i( )I II I
J_codk (k+a) (k-a) contour } _- 11_ie- e

m_

so that

I - e e
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It can be shown that for w < 0

I 2w2 e -(_)1_1 e -i(@'_)

-_ <-_:_

1

ICase III Ej _0 > > all v.j > lwl

As _ goes to zero and as w becomes vanishingly small (less
O

than the vj), the poles lie approximately on the 45 ° diagonals in

the complex k plane. Therefore,

25 -(_1_1 i (_)1_1
I = -- e e

22 -(_)1_1 -i (_)1_1
--- _ e e

F. 2. w Integration

The w integration is facilitated by the presence of

delta functions.

2 >> all _.
i p

We break the w integral up into frequency intervals. In

equation (15) for _!l) (_,t), we have
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d® [6(_-%)] ®e-i®t [I
o _>_p

(I_I,®)]

de [6(m * %)] we-iwt [I (|_,w)] :

I_1 _°e in E(_)l_l - %t]
(F2)

On the other ha_d, in equation (16) for -(E1_l)(x,t), we must be

careful to avoid integrating over frequencies within + _ of

i

Pi) _

lWo_

(see Case IV). For the frequency range

i

lie w2] _ + IeI , the m integrati°n Yields> Pi

4w 2 121z i

%a

e

cos [(_) I_1 - %t] (F3)
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Case II:

i

z%
0 J

> I%1 > > all
J

Integration over _ gives

4w 2 i

e-(_)Ixl {sin [(_)I2_GI _I-Wot] }

in the expression for _(i) while for E_l1)we hsve

(F4)

2] e-(_)121

I_1 I[ %_ %2 _ 2)

co_E(_)I_I_I - Wot]" (F5)

. We set the "damping decrement," _, in these expressions equal

to b:

_o 4 _Pj _o _Pj _J

i + ---_ 2

b : _ (%2+ ,92) c (%2+ '9 )

1

I[
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Case III: I }lr w 2 7

J P_
> > all _j > Iwo I

We have

4w 2 i
_ b

e sin[ b I_I t]

after the w integration in (15).

goes to zero.

Expression (16) vanishes when
o

}l i 2}iCase IV: 7_ _p - ¢ 7 +
i i i Pi

In performing the w integration to obtain (F3) and (F5), we

did not include collisional effects. That is, we did not substitute

m. (i + ivj/w) for mj in the w which appear outside l(I_I , w).
J pj

The reason is that we shall presently consider these expressions in

their collisionless limit, having used the collision frequencies

merely to facilitate the k integration. Strictly speaking, however,

the preservation of an infinitesimally small collision frequency

may be necessary mathematically in order to successfully integrate

over the frequency range defined above.
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The problem here is that our expansion of the denominator

D in Appendix E is invalid. Therefor% for those frequencies

only_ we keep D intact and attempt to integrate over w first

instead of over k. Our w integrands will be of the form

S dw
-+ wo)

2 w21i Pi

times f (k,w)

where f(k,w) is some function of _ and _. We note immediately

that such an integrand is undefined_ i.e._ 0/0, for frequencies

w2 2such that : E _ _ since by definition the delta f_inction
i Pi

is zero whenever w _ _o and since we have excluded the driving

frequencies from this interval.

Inserting the collision frequencies into the integrand

through the makes the denominator complex so that it does

_J 2 i

n°t vanish as wpasses thr°ugh (E _ 12i i Hence, we may

argue that integration over frequencies near the plasma fre-

quency should not affect our results, provided w° is far enough

removed from _ _i 2 .
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F._. The Collisionless Limit

i

I 1Case I: w° > _ _ > > all v.
J Pj J

In the limit of a collisionless plasma, as v. _ O
g

(or B _ O), expressions (F2) and (F3) become

4w 2 i

and

4w 2

I% -z®
i Pi

cos (a l_I - Wot)

respectively,

a

where

o

c

i

i Pi

2
%
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We substitute these results into equations (15) and (16) and

obtain equations (17) and (18) of the text:

[Ei(I) (_,t) = - T _ x
_o sin (a l_l - mot) I

J
(17)

I 2)xm

_ i Pi
I)

c,._,x,_,: 2 2I°o 1
\ cos(al_l -mot)

-- • V X _o -"c Ixl

(18)

i

In the collisionless limit, but with the explicit restric-

tion that lWol > > all the _j, expressions (F4) and (F5) go over

into

4_2 i •-bill
i_1 _°e sin_°t
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and

Iz _ 21 -bl_l
e

4w 2 i Pi

171 E • - •
i Pi o

cos %t ,

respectively_ where
i

®2 5 2Pi uu
b = _ o

2

c z_
i i

We substitute these results into equations (15) and (16) and

recover equations (19) and (20) of the text. :

. _t = c V ×

El,(_, t) =

t'

-. -bl_'l }

_o e

I_i s_n%t

liz w 21 cosw tPi o

°q
-. e

•--9-° • _7 x%c I_1

(19)

• (20)
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FIGURECAPTIONS

Figure i.

Figure 2.

Figure 3.

A circular loop of source current immersed in a

streaming plasma. The zeroth order plasma flow
A

vector is _ The unit vectors ^ _ and e
o" ex' y z

form a Cartesian triad with _ normal to the
z

plane of the loop; r and _ are the corresponding

polar coordinates. The radius of the loop is a .
o

Coordinate configuration for the electric and

magnetic fields. The Cartesian coordinate sys-

tem (xyz) is fixed in space with its y axis

directed along _; the xz plane is normal to

the direction of plasma flow. The vector _o

represents the ma_etic moment of the point

dipole, which is placed at the origin of (xyz).

The polar angle _m and the azimuthal angle _m

the angular orientation of _o' whilespecify

the spherical coordinates r, e, and _ define

the position of an observer.

Poynting vector skew. The dipole is perpendicular

to the plane of the paper (the xy plane of Figure

2), while the plasma flow is parallel to it. The

dark arrows show schematically the direction of

the Poynting vector, S, in the xy plane at vari-

ous points around a contour of constant E. 2. The
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angle T, which specifies the degree of skew, or tilt,

of S away from the radial direction, is defined

by the expression

ts/q T =-- C21]I%1[ icos ic 2 "

_uo n a

Figure 4. Contours of constant E2 and E,2 (radiation fields).

The dipole is perpendicular to the zeroth-order

plasma flow, as in Figure 3. The ellipse schemati-

cally represents a contour of constant E 2, where

]_I is the magnitude of the total electric field.

The lemniscate schematically traces a contour of

constant Eli2. The contours lie in the "equatorial"

(_y) plane of the dipole. The t£_.e-average force

which the plasma exerts on the dipole is

][_o Wo 7, _ n

_. i i a _o

F = 4 7-
orce 6 c

Figures 5A

and 5B Complex integration contours in _ space (Appendix F).

Figure (5A) applies to the ease where

i

I_o, > (7,i_i21 _ > > all _)j ,
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while Figure (5B) is applicable to

i

The encircled x's are poles of the k integrands.
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